CURVATURE AND RANK OF TEICHMÜLLER SPACE

By Jeffrey Brock and Benson Farb

Abstract

Let S be a surface with genus g and n boundary components, and let $d(S)=3 g-3+n$ denote the number of curves in any pants decomposition of S. We employ metric properties of the graph of pants decompositions $\mathbf{P}(S)$ to prove that the Weil-Petersson metric on Teichmüller space Teich (S) is Gromov-hyperbolic if and only if $d(S) \leq 2$. When $d(S) \geq 3$, the Weil-Petersson metric has higher rank in the sense of Gromov (it admits a quasi-isometric embedding of $\mathbb{R}^{k}, k \geq 2$); when $d(S) \leq 2$, we combine the hyperbolicity of the complex of curves and the relative hyperbolicity of $\mathbf{P}(S)$ to prove Gromov-hyperbolicity.

We prove moreover that Teich (S) admits no geodesically complete, Mod (S)-invariant, Gromovhyperbolic metric of finite covolume when $d(S) \geq 3$, and that no complete Riemannian metric of pinched negative curvature exists on Moduli space $\mathcal{M}(S)$ when $d(S) \geq 2$.

1. Introduction. The Weil-Petersson metric on Teichmüller space Teich (S) has many curious properties. It is a Riemannian metric with negative sectional curvature, but its curvatures are not bounded away from zero or negative infinity. It is geodesically convex, but it is not complete. In this paper we show that in spite of exhibiting negative curvature behavior, the Weil-Petersson metric is not coarsely negatively curved except for topologically simple surfaces S. Our main theorem answers a question of Bowditch [Be, Question 11.4].

Theorem 1.1. Let S be a compact surface of genus g with n boundary components. Then the Weil-Petersson metric on Teich (S) is Gromov-hyperbolic if and only if $3 g-3+n \leq 2$.

The constant $d(S)=3 g-3+n$ is fundamental in Teichmüller theory: it is the complex dimension of the Teichmüller space Teich (S), or more topologically, the number of curves in any pair-of-pants decomposition of S. An equivalent formulation of Theorem 1.1, then, is that the Weil-Petersson metric is Gromovhyperbolic precisely when the interior int (S) is a torus with at most two punctures or a sphere with at most five punctures.

Theorem 1.1 exhibits the first example of a $(\operatorname{Mod}(S)$-invariant) metric on a Teichmüller space of (real) dimension greater than 2 that is Gromov-hyperbolic. In contrast, these Teichmüller spaces admit no complete Riemannian metric of pinched negative sectional curvature (Theorem 1.3 below). To summarize, the overlap of the positive and negative results in this paper give:

[^0]When $d(S)=2$, the Weil-Petersson metic on Teich (S) is Gromov-hyperbolic, yet Teich (S) admits no $\operatorname{Mod}(S)$-invariant, complete, Riemannian metric with pinched negative curvature.
The fact that the Weil-Petersson metric is not Gromov-hyperbolic when $d(S) \geq 3$ relies heavily on a geometric investigation of a combinatorial model for the Weil-Petersson metric constructed in $[\mathrm{Br}]$ (see below).

Constraints on metrics on $\mathcal{M}_{g, n}$. In S. Kravetz' 1959 paper [Kr], it was claimed that the Teichmüller metric on the moduli space $\mathcal{M}_{g, n}$ of Riemann surfaces of genus $g \geq 2$ with n punctures is a complete metric with negative curvature in the sense of Busemann, i.e., that Teich $\left(S_{g, n}\right)$ admits such a $\operatorname{Mod}(S)$ invariant metric. The proof had an error, and the result was shown to be false in [Mas1]; in fact Masur-Wolf showed in [MW] that the Teichmüller metric is not even Gromov-hyperbolic (see [MP1], [MP2] and [Iv4] for other proofs). The following theorem shows that this phenomenon has little to do with the Teichmüller metric; in fact it holds for a broad class of metrics.

Let X be a geodesically complete metric space and let Γ be a group of isometries of X acting properly discontinuously. We say that the action has an infinite co-packing if there exists $r>0$ and there exists an infinite collection of disjoint r-balls B_{i} in X / Γ, each of which is isometric to some r-ball \widetilde{B}_{i} in X. If this holds for no $r>0$ then we say that (the action of) Γ has no infinite co-packing, or that X has a Γ-invariant metric of finite covolume.

Theorem 1.2. Suppose $d(S) \geq$ 3. Then Teich (S) admits no proper, geodesically complete, Gromov-hyperbolic, $\operatorname{Mod}(S)$-invariant path metric with no infinite co-packing.

Theorem 1.2 applies in particular to the Teichmüller metric, giving the main result of [MW] when $d(S) \geq 3$. Theorem 1.2 also applies to any $\operatorname{Mod}(S)$-invariant, finite covolume, complete Riemannian metric on Teich (S) with sectional curvatures of absolute value bounded by some $C<\infty$; in particular it applies to McMullen's Kähler hyperbolic metric h on Teich (S) constructed in [Mc]. The theorem also applies to many infinite co-volume metrics with decaying injectivity radius.

We note that our argument for Theorem 1.2 breaks down in the case of the Weil-Petersson metric, which is not complete as a metric space (and, in particular, is not geodesically complete). Indeed, with the isometric action of $\operatorname{Mod}(S)$ on the Weil-Petersson metric, Dehn twists are infinite order elliptic elements, as they act with bounded orbits. The first part of our proof of Theorem 1.2 is essentially an argument of McCarthy-Papadopoulos [MP1], where the theorem is proven under the additional hypothesis that every pseudo-Anosov element acts as a hyperbolic isometry. We reproduce the argument here for completeness and since it is brief; we also extend the proof to the punctured case.

In the absence of the finite-volume hypothesis, it is possible to say something about complete Riemannian metrics of pinched negative curvature. Indeed,

Theorem 1.2 and the Margulis Lemma combine to give the following theorem of Ivanov [Iv1].

Theorem 1.3. (Ivanov) If $3 g-3+n \geq 2$ then $\mathcal{M}_{g, n}$ admits no complete Riemannian metric of pinched negative sectional curvature.

We remark that here we are considering metrics on $\mathcal{M}_{g, n}$ as lying in the category of Riemannian orbifolds; our proof gives similar results for the (finite) manifold covers of $\mathcal{M}_{g, n}$. Also note that Theorem 1.2 implies Theorem 1.3 in the finite volume case for $d(S) \geq 3$ but does not cover the case when $d(S)=2$, i.e. when $\operatorname{int}(S)$ is a torus with two punctures or a sphere with five punctures.

The rank of the Weil-Petersson metric. To prove that the Weil-Petersson metric is not Gromov-hyperbolic when $d(S) \geq 3$ (the "only if" part of Theorem 1.1), we show it has higher rank in these cases.

The rank of a metric space X is the maximal dimension n of a quasi-flat in X, that is a quasi-isometric embedding $\mathbb{R}^{n} \rightarrow X$. This notion of rank was introduced by Gromov ([Grom], 6. B_{2}), and agrees with the usual notion of rank of a nonpositively curved symmetric space (this follows easily from the quasi-flats theorem of [EF] and [KL]).

There has been a recurring comparison in the literature of Teichmüller space to symmetric spaces of noncompact type, particularly in terms of the rank one vs. higher rank dichotomy (see, e.g., [Iv2, Iv3, FLM]). Using a different, purely group-theoretic notion of rank due to Ballmann and Eberlein (based on work of Prasad and Raghunathan), Ivanov proved that the mapping class group has rank one; see $\S 9.4$ of [Iv3] for a discussion. In contrast, the following theorem adds to the list of higher rank behavior of Teichmüller space.

Theorem 1.4. The rank of the Weil-Petersson metric on Teich (S) is at least $d(S) / 2$.

As Gromov-hyperbolic metric spaces have rank one, Theorem 1.4 implies one direction of Theorem 1.1. We conjecture that the Weil-Petersson metric on Teich (S) has rank precisely the integer part of $(d(S)+1) / 2$; the conjecture is supported by the hierarchies machinery of [MM2], but bounding the rank from above appears delicate.

Remark. While Dehn twists about disjoint simple closed curves produce quasi-flats in the mapping class group (endowed with the word metric), see [FLM], Dehn twist orbits in Teich (S) do not generate quasi-flats in either the Weil-Petersson or Teichmüller metrics: indeed, if $\tau \in \operatorname{Mod}(S)$ is a Dehn twist, we have $d_{\mathrm{WP}}\left(X, \tau^{n} X\right)=O(1)$ and $d_{\mathrm{T}}\left(X, \tau^{n} X\right)=O(\log (n))$. Evidently, the appearance of an orbit of a subgroup generated by commuting Dehn twists in the Teichmüller metric is more akin to a horosphere in a rank-one symmetric space. (Note that in higher rank symmetric spaces horospheres are actually quasi-isometrically embedded.)

Figure 1. Elementary moves on pants decompositions.

Combinatorics of curves on surfaces. The proof of Theorems 1.1 and 1.4 rely on important work of Masur and Minsky [MM1, MM2] on combinatorial complexes associated to curves on surfaces.

Let \mathcal{S} denote the set of all isotopy classes of essential, nonperipheral, simple closed curves on the surface S. The curve complex $\mathcal{C}(S)$ is the simplicial complex whose vertices are the elements of \mathcal{S} and whose k-simplices span collections of $k+1$ curves in \mathcal{S} that can be realized pairwise disjointly on S. Metrizing each simplex to be the standard Euclidean simplex, one obtains a metric on $\mathcal{C}(S)$. The main theorem of [MM1] is that $\mathcal{C}(S)$ endowed with this metric is a Gromovhyperbolic metric space.

Our proof of Theorem 1.4 uses a closely related combinatorial object. Consider the graph whose vertices are pair-of-pants decompositions of S, and whose edges join decompositions that differ by a single elementary move (see Figure 1). Assigning each edge length 1 , we obtain a graph $\mathbf{P}(S)$ with a distance function $d_{\mathbf{P}}(\cdot, \cdot)$ on pairs of vertices given by taking the minimal length path between two pants-decompositions. This graph is the 1 -skeleton of a simplicial complex introduced by Hatcher-Thurston [HT]; in particular they proved that this graph is connected. The graph $\mathbf{P}(S)$ coarsely models Weil-Petersson geometry.

Theorem 1.5. [Br] The graph $\mathbf{P}(S)$ is quasi-isometric to Teich (S) endowed with the Weil-Petersson metric.

The proof of Theorem 1.4 can thus be reduced to finding quasi-isometrically embedded flats in the graph $\mathbf{P}(S)$. The hypothesis is explained by the need for at least two disjoint essential subsurfaces of S whose Teichmüller spaces are themselves non-trivial, in which case flats arise from pants decompositions related by elementary moves that occur in disjoint subsurfaces.

Conversely, when $d(S) \leq 2$, one cannot perform independent elementary moves on pairs of pants because there are not enough disjoint subsurfaces on which to perform them. The lack of available subsurfaces leads one to consider the
possibility that $\mathbf{P}(S)$ is Gromov-hyperbolic in these cases. Gromov-hyperbolicity is known for $d(S)=1$ by [MM1]; we establish Gromov-hyperbolicity of $\mathbf{P}(S)$ for for $d(S)=2$ using three ingredients: hyperbolicity of the complex of curves $\mathcal{C}(S)$ (proved in [MM1]), the theory of relative hyperbolicity developed in [Fa], and the hierarchical structure of $\mathcal{C}(S)$ given in [MM2].

Plan of the paper. Section 2 gives preliminaries on Teichmüller theory and Weil-Petersson geometry, Gromov-hyperbolic metric spaces, and the combinatorics of curves on surfaces. Section 3 contains the proof of nonexistence of geodesically complete Gromov-hyperbolic metrics on Teich (S) with no infinite co-packing when $d(S) \geq 3$ (Theorem 1.2), and gives constraints on complete Riemannian metrics of pinched negative curvature on $\mathcal{M}_{g, n}$ (Theorem 1.3).

In Section 4 we show that the Weil-Petersson metric has higher rank when $d(S) \geq 3$ (Theorem 1.4), proving one direction of Theorem 1.1. Finally, in Section 5 we prove the other direction of Theorem 1.1 by showing the Weil-Petersson metric is Gromov-hyperbolic when $d(S) \leq 2$.

We conclude the paper with a list of questions for further investigation.

Notes and ackhowledgements. There have been a number of developments in response to the original posting of this paper in September of 2001. Z. Huang [Hu] answered in the negative Question 6.3 of that version, on the asymptotic flatness of the Weil-Petersson metric in the sporadic cases; see the final paragraph of the paper. J. Aramayona [Ar] and J. Behrstock [B] have given two other proofs that the Weil-Petersson metric on Teich (S) is Gromov-hyperbolic when S is the five-times punctured sphere.

The authors would like to thank Nikolai Ivanov, Howard Masur, and Yair Minsky for many informative conversations and useful suggestions. They would also like to thank the referee, whose comments helped to greatly improve this paper.

2. Preliminaries.

2.1. Teichmüller space and moduli space. Let S be a closed, orientable surface of genus g, possibly with boundary. When S has boundary ∂S denote by int (S) its interior $S-\partial S$. The Teichmüller space Teich (S) parameterizes finite area hyperbolic surfaces X equipped with markings, or homeomorphisms $(f: \operatorname{int}(S) \rightarrow$ X), up to isometries that preserve the marking: i.e.,

$$
(f: \operatorname{int}(S) \rightarrow X) \sim(g: \operatorname{int}(S) \rightarrow Y)
$$

if there is an isometry $\phi: X \rightarrow Y$ so that $g \simeq \phi \circ f$.

The space Teich (S) is topologized by the distance

$$
d((f, X),(g, Y))=\inf _{\varphi} \log L(\varphi),
$$

where the infimum is taken over all bi-Lipschitz diffeomorphisms φ isotopic to $g \circ f^{-1}$ and $L(\varphi)$ is the minimal bi-Lipschitz constant for φ. It is homeomorphic to a cell of dimension $6 g-6+2 n$ where n is the number of boundary components of S.

The Teichmüller space carries a natural complex structure; its complex cotangent space T_{X}^{*} Teich (S) at $X \in \operatorname{Teich}(S)$ is identified with the space of holomorphic quadratic differentials $Q(X)$ on X. The Weil-Petersson metric on Teich (S) is obtained by duality from the L^{2}-inner product on $Q(X)$

$$
\langle\varphi, \psi\rangle_{\mathrm{WP}}=\left(\int_{X} \frac{\varphi \bar{\psi}}{\rho^{2}}|d z|^{2}\right)^{1 / 2}
$$

where $\rho(z)|d z|$ is the hyperbolic line element on X.
The mapping class group $\operatorname{Mod}(S)$ of S is defined as the group of isotopy classes of orientation-preserving diffeomorphisms $S \rightarrow S$. The group $\operatorname{Mod}(S)$ acts properly by complex automorphisms on Teich (S). This action is also isometric in the Weil-Petersson and Teichmüller metrics (among others). The quotient orbifold of Teich (S) by this action is called the moduli space of Riemann surfaces, and is denoted by $\mathcal{M}(S)$, or by $\mathcal{M}_{g, n}$ when S has genus g with n boundary components.
2.2. The pants graph. A simple closed curve $\gamma \subset S$ is essential if it is not homotopically trivial and not homotopic into ∂S. A subsurface $R \subset S$ is a compact connected embedded surface lying in S. The subsurface R is essential if its boundary components are homotopically essential in S.

Let \mathcal{S} denote the isotopy classes of essential simple closed curves on S. A pants decomposition P of S is a maximal collection of distinct elements of δ so that no two isotopy classes in P have representatives that intersect. The pants $\operatorname{graph} \mathbf{P}(S)$ is the graph with one vertex for each pants decomposition and an edge joining each pair of vertices whose pants decompositions differ by an elementary move (see Figure 1). The distance function

$$
d_{\mathbf{P}}: \mathbf{P}^{0}(S) \times \mathbf{P}^{0}(S) \rightarrow \mathbb{Z}_{\geq 0}
$$

on the vertex set $\mathbf{P}^{0}(S)$ of $\mathbf{P}(S)$ counts the minimal number of elementary moves between pants decompositions.

Geodesic representatives. We briefly describe the quasi-isometry of Theorem 1.5.

Given $X \in \operatorname{Teich}(S)$, the elements of P can be represented as pairwise disjoint closed geodesics on X. The sub-level sets for the lengths of the elements of P play a special role in Weil-Petersson geometry. Let

$$
V_{L}(P)=\left\{X \in \operatorname{Teich}(S) \mid \ell_{X}(\alpha)<L \text { for each } \alpha \in P\right\}
$$

Applying theorems of Wolpert [Wol] and Masur [Mas2], we have the following (see [Br]):

Proposition 2.1. [Br] Given L there is a D_{L} so that for each $P \in \mathbf{P}(S)$, the sub-level set has Weil-Petersson diameter

$$
\operatorname{diam}_{\mathrm{WP}}\left(V_{L}(P)\right)<D_{L}
$$

By a theorem of Bers, there is an $L>0$ so that the union

$$
\bigcup_{P \in \mathbf{P}(S)} V_{L}(P)
$$

covers Teich (S). Let $V(P)=V_{L}(P)$. Let

$$
Q: \mathbf{P}(S) \rightarrow \operatorname{Teich}(S)
$$

be any map for which $Q(P) \in V(P)$. Then Theorem 1.1 of $[\mathrm{Br}]$ shows Q is a quasi-isometry. In other words there are constants $K_{1}>1$ and $K_{2}>0$ depending only on S so that given $X \in V\left(P_{X}\right)$ and $Y \in V\left(P_{Y}\right)$, we have

$$
\frac{1}{K_{1}} d_{\mathbf{P}}\left(P_{X}, P_{Y}\right)-K_{2} \leq d_{\mathrm{WP}}(X, Y) \leq K_{1} d_{\mathbf{P}}\left(P_{X}, P_{Y}\right)+K_{2}
$$

2.3. The curve complex. Let $\mathcal{C}(S)$ be the complex associated to the simple closed curves \mathcal{S} on S as follows:

- The zero-skeleton $\mathcal{C}^{0}(S)$ is identified with the elements of \mathcal{S}.
- Any $k+1$ curves $\left(\alpha_{1}, \ldots, \alpha_{k+1}\right)$ in δ^{k+1} with the property $\alpha_{i} \neq \alpha_{j}$ and $i\left(\alpha_{i}, \alpha_{j}\right)=0$, for $i \neq j$ determine a k simplex in $\mathcal{C}(S)$.

For an essential, nonannular subsurface $Y \subset S$, the curve complex $\mathcal{C}(Y)$ is a subcomplex of $\mathcal{C}(S)$. The subsurface projection

$$
\pi_{Y}: \mathcal{C}(S) \rightarrow \mathcal{P}(\mathcal{C}(Y))
$$

from the curve complex $\mathcal{C}(S)$ to the set $\mathcal{P}(\mathcal{C}(Y)$) of all subsets of $\mathcal{C}(Y)$ is defined by setting $\pi_{Y}(\alpha)=\alpha$ if $\alpha \in \mathcal{C}(Y)$ and letting

$$
\pi_{Y}(\alpha)=\cup_{\alpha^{\prime}} \partial \mathcal{N}\left(\alpha^{\prime} \cup \partial_{\alpha^{\prime}} Y\right)
$$

be the union over all $\operatorname{arcs} \alpha^{\prime}$ of essential intersection of α with Y of the boundary components of a regular neighborhood $\mathcal{N}\left(\alpha^{\prime} \cup \partial_{\alpha^{\prime}} Y\right)$ of $\alpha^{\prime} \cup \partial_{\alpha^{\prime}} Y$, where $\partial_{\alpha^{\prime}} Y$ represents the components of the boundary of Y that α^{\prime} intersects (see [MM2, Sec. 2]).

For two subsets A and B of $\mathcal{C}(Y)$, the (semi)-distance $d_{Y}(A, B)$ is defined by

$$
d_{Y}(A, B)=\operatorname{diam}_{\mathcal{C}(Y)}(A \cup B)
$$

This notion of distance allows us to measure the distance between pants decompositions P and P^{\prime} relative to Y by letting $\pi_{Y}(P)=\cup_{\alpha \in P} \pi_{Y}(\alpha)$ and letting the projection distance $d_{Y}\left(P, P^{\prime}\right)$ between P and P^{\prime} relative to Y be

$$
d_{Y}\left(P, P^{\prime}\right)=d_{Y}\left(\pi_{Y}(P), \pi_{Y}\left(P^{\prime}\right)\right) .
$$

We also record for reference the following Lipschitz property for the projection π_{Y} :

Lemma 2.2. (Lem. 2.3 of [MM2]) Let Y be an essential subsurface of S. Then if $\alpha, \beta \in \mathcal{C}(S)$ are vertices connected by an edge in $\mathcal{C}(S)$, and if $\pi_{Y}(\alpha) \neq \varnothing \neq \pi_{Y}(\beta)$, then $d_{Y}(\alpha, \beta) \leq 2$.

For a detailed discussion of the curve complex and related projection mappings, see [MM1] and [MM2].
2.4. Hyperbolic metric spaces. In this subsection we briefly recall some material on hyperbolic metric spaces. The standard reference for this material is [GH]. All statements about hyperbolic metric spaces which we use can be found in [GH].

A metric space X is proper if every closed ball in X is compact. If for any $x, y \in X$, there exists a parametrized path $\gamma:[0, d(x, y)] \rightarrow X$ from x to y with $d(\gamma(s), \gamma(t))=|s-t|$ for all $s, t \in[0, d(x, y)]$ then X is called a geodesic metric space.

A geodesic metric space X is Gromov-hyperbolic, or δ-hyperbolic, if there exists $\delta>0$ so that every geodesic triangle T in X is δ-thin: the δ-neighborhood of any two sides of T contains the third side.

A proper, δ-hyperbolic metric space has a natural compactification $X \cup \partial X$, where ∂X is the collection of Hausdorff equivalence classes of geodesic rays in X. Every isometry of X acts by homeomorphisms on ∂X. We denote the fixed set of the action of an isometry $g \in \operatorname{Isom}(X)$ in ∂X by Fix (g).

Combining Theorems 16 and 17 of Section 8 of [GH] gives the following classification theorem.

Theorem 2.3. (Classification of isometries) Every isometryg of a δ-hyperbolic metric space is precisely one of the following types:
(1) elliptic: every g-orbit is bounded.
(2) hyperbolic: $\operatorname{Fix}(g)=\{x, y\}$ for some $x \neq y$ in ∂X, in which case any g-orbit in X is a quasi-geodesic with limit set $\{x, y\}$.
(3) parabolic: $\operatorname{Fix}(g)=\{x\}$ for some $x \in \partial X$.
2.5. The rank of a metric space. A quasi-isometry between metric spaces is a map $f: X \rightarrow Y$ such that, for some constants $K, C, C^{\prime}>0$:
(1) $\frac{1}{K} d_{X}\left(x_{1}, x_{2}\right)-C \leq d_{Y}\left(f\left(x_{1}\right), f\left(x_{2}\right)\right) \leq K d_{X}\left(x_{1}, x_{2}\right)+C$ for all $x_{1}, x_{2} \in X$.
(2) The C^{\prime}-neighborhood of $f(X)$ is all of Y.

A map satisfying (1) but not necessarily (2) is called a K-quasi-isometric embedding. A K-quasigeodesic in X is a K-quasi-isometric embedding $\mathbf{R} \rightarrow X$. It is a standard fact (see $[\mathrm{GH}]$) that the property of being δ-hyperbolic is invariant under quasi-isometry.

A metric space has a quasi-flat of dimension n if there is a quasi-isometric embedding $F: \mathbb{R}^{n} \rightarrow X$. We say a metric space has higher rank if it admits a quasi-flat of dimension at least 2 . Since \mathbb{R}^{n} is not Gromov-hyperbolic, the quasi-isometric embedding F provides a family of triangles in X that violates the δ-thin condition for all $\delta>0$. Thus, a higher rank metric space is not Gromovhyperbolic.
3. Constraints on metrics on $\mathcal{M}_{g, n}$. In this section we prove Theorems 1.2 and 1.3.

The idea of Theorem 1.2 is that a properly discontinuous action of $\operatorname{Mod}(S)$ on a geodesically complete, δ-hyperbolic metric space has certain special properties when S is sufficiently complicated. Indeed, when $d(S) \geq 3$, then entire group $\operatorname{Mod}(S)$ must act parabolically with a single parabolic fixed point at infinity. This first part is essentially an argument of McCarthy-Papadopoulos [MP2]. As with isometric actions on hyperbolic space, we show that such an action must have an infinite co-packing.

Notation. For notational purposes in the following arguments, we will use $S_{g, n}$ to refer to a surface with genus g and n boundary components.

Proof of Theorem 1.2. Suppose to the contrary that $X=$ Teich $\left(S_{g, n}\right)$ admits a $\operatorname{Mod}\left(S_{g, n}\right)$-invariant, geodesically complete path metric which is δ-hyperbolic. We have that $\operatorname{Mod}\left(S_{g, n}\right)$ acts properly discontinuously on X by isometries, and (see $\S 2.4)$ that $\operatorname{Mod}\left(S_{g, n}\right)$ thus acts by homeomorphisms on the Gromov boundary ∂X.

We claim that since $3 g-3+n \geq 3$, we may pick a generating set $\left\{g_{i}\right\}$ for $\operatorname{Mod}\left(S_{g, n}\right)$ consisting of Dehn twists about non-separating curves, with the following properties:
(1) Each g_{i} is conjugate in $\operatorname{Mod}\left(S_{g, n}\right)$ to each g_{j}.
(2) The group generated by elements commuting with g_{1} is not virtually cyclic, i.e., it does not contain a cyclic subgroup of finite index; similary for g_{2}.
(3) g_{1} and g_{2} do not commute; in fact sufficiently high powers of g_{1} and g_{2} generate a free group.
(4) The commuting graph for $\left\{g_{i}\right\}$, consisting of a vertex for each g_{i} and an edge connecting commuting elements, is connected.

When $n=0$ one may take the "standard" Dehn-Lickorish-Humphries generators (see $[\mathrm{FF}]$). For $n>0$ one proceeds inductively by using the exact sequence (see, e.g. [Iv3]):

$$
1 \rightarrow \pi_{1}\left(S_{g, n}\right) \rightarrow \operatorname{Mod}\left(S_{g, n+1}\right) \rightarrow \operatorname{Mod}\left(S_{g, n}\right) \rightarrow 1
$$

where the kernel is generated by "pushing the puncture" around a given loop, one for each loop in a standard generating set for $\pi_{1}\left(S_{g, n}\right)$. Such elements of $\operatorname{Mod}\left(S_{g, n+1}\right)$ are generated by elements $\alpha_{1} \alpha_{2}^{-1}$ where each α_{i} is a Dehn twist about a non-separating curve; one then adds these Dehn twists to the previous list of generators, easily checking the required properties, and continues inductively.

The elements g_{1} and g_{2} may then be taken to be an intersecting pair of loops in the Dehn-Humphries-Lickorish generating set. In particular, the group generated by elements commuting with g_{i} (for $i=1$ or $i=2$), contains the mapping class $\operatorname{group} \operatorname{Mod}\left(S_{g, n-1}\right)$, which is not virtually cyclic for $3 g-3+n \geq 3$.

Now apply the classification of isometries of δ-hyperbolic metric spaces (see Theorem 2.3 above) to g_{1}. Note that this classification uses the geodesic assumption on the metric space X. As g_{1} has infinite order and the action of $\operatorname{Mod}\left(S_{g, n}\right)$ is properly discontinuous, it follows that g_{1} is not of elliptic type. Suppose g_{1} is of hyperbolic type. Then $\operatorname{Fix}\left(g_{1}\right)=\{x, y\}$ for some $x \neq y$ in ∂X.

The subgroup H of $\operatorname{Mod}\left(S_{g, n}\right)$ commuting with g_{1} clearly leaves $\{x, y\}$ invariant, and is not virtually cyclic. But Theorem 30 in Section 8 of [GH] states that, for a group Γ acting properly discontinuously on a proper, geodesic, δ-hyperbolic metric space X, the stabilizer of a pair of distinct points $\{x, y\}$ has a cyclic subgroup of finite index, a contradiction. Thus it must be that g_{1} is of parabolic type, and so Fix $\left(g_{1}\right)=x$ for some $x \in \partial X$.

As each g_{i} is conjugate to g_{1}, each g_{i} is also of parabolic type, say fixing the unique point $x_{i} \in \partial X$. As Dehn twists about disjoint curves commute, since $[g, h]=1$ implies $g(\operatorname{Fix}(h))=\operatorname{Fix}(h)$, and since the commuting graph of $\left\{g_{i}\right\}$ is connected, it follows that Fix $(g)=x$ for each $g \in\left\{g_{i}\right\}$.

We claim that every element of $\operatorname{Mod}\left(S_{g, n}\right)$, not just the generating set, is of parabolic type with unique fixed point $x \in \partial X$. As $\operatorname{Mod}\left(S_{g, n}\right)$ has a torsionfree subgroup of finite index, if this is not true then there exists $g \in \operatorname{Mod}\left(S_{g, n}\right)$ acting on X as an isometry of hyperbolic type, with x as an attracting point. Pick any $z \in X$. By Theorem 8.21 of [GH], the orbit $\left\{g^{n} z: n \in \mathbb{Z}\right\}$ is a K quasigeodesic in x for some $K \geq 1$ and has limit point x as $n \rightarrow \infty$. Pick any element $h \in \operatorname{Mod}\left(S_{g, n}\right)$ acting as a parabolic fixing x (such h exist by the previous paragraph). Since $\left\{g^{n} z: n \in \mathbb{Z}\right\}$ and $\left\{h g^{n} z: n \in \mathbb{Z}\right\}$ are both K-quasigeodesics which limit to x as $n \rightarrow \infty$, it follows that there exists $N>0, C>0$ so that
$d\left(g^{n}(z), h g^{n}(z)\right)<C$ for all $n>N$. But then $d\left(g^{-n} h g^{n}(z), z\right)=d\left(h g^{n}(z), g^{n}(z)\right)<$ C for all $n>N$. Since h is of parabolic type and g is of hyperbolic type, the set $\left\{g^{-n} h g^{n}: n \in \mathbb{Z}\right\}$ is infinite, so that the hypothesis of proper discontinuity is violated. Hence the claim is proved. We note that, while this claim is obviously true in the negatively curved Riemannian context without the proper discontinuity hypothesis, it may not be true without this hypothesis for arbitrary Gromovhyperbolic spaces; see [GH], 8.13.

It follows that $\operatorname{Mod}\left(S_{g, n}\right)$ permutes the set of equivalence classes of geodesic rays with x as their common endpoint at infinity $x \in \partial X$. We now show that one of the hypotheses of the theorem must be violated.

Recall from $\S 8.1$ of $[\mathrm{GH}]$ that any choice of a point $x \in \partial X$ and basepoint $y \in X$ determines a Busemann function $\beta: X \rightarrow \mathbb{R}$ on X defined by

$$
\left.\beta(z)=\sup _{\gamma}\left\{\limsup _{t \rightarrow \infty}\left(d_{X}(z, \gamma(t))-t\right)\right)\right\}
$$

where the sup is taken over all geodesic rays γ based at y with $\gamma(\infty)=x$. In the proof of Proposition 8.18 of [GH] (see also Remark 8.13.ii) it is shown that any parabolic isometry g fixing $x \in \partial X$ must almost preserve level sets of the Busemann function, that is there exists a constant C so that $\left|\beta(w)-\beta\left(g^{n}(w)\right)\right| \leq C$ for all $n \in \mathbb{Z}$ and any w lying on the ray γ.

As this holds true for all $g \in \operatorname{Mod}\left(S_{g, n}\right)$, it follows that any $\operatorname{Mod}\left(S_{g, n}\right)$-orbit in X lies within a bounded distance of some level set of β. But β is clearly proper on γ; in particular there exists a constant ϵ and points $z_{i}, i=1,2, \ldots$ on γ with the following two properties:
(1) The natural map from the ϵ-ball around each z_{i} into Teich $\left(S_{g, n}\right) / \operatorname{Mod}\left(S_{g, n}\right)$ is an embedding, and
(2) for any i, j with $i \neq j$, the ϵ-ball centered at z_{i} is disjoint from the $\operatorname{Mod}\left(S_{g, n}\right)$-orbit of the ϵ-ball centered at z_{j}.

This contradicts the co-packing hypothesis.
For Theorem 1.3, we illustrate that the existence of a $\operatorname{Mod}(S)$-invariant complete Riemannian metric on Teich (S) of pinched negative curvature puts even stronger restrictions on an isometric action of $\operatorname{Mod}(S)$.

Proof of Theorem 1.3. If $\mathcal{M}_{g, n}$ did admit such a metric, then lifting this metric to the universal cover Teich $\left(S_{g, n}\right)$ gives a properly discontinuous, isometric action of $\operatorname{Mod}\left(S_{g, n}\right)$ on a complete, 1-connected, pinched negatively curved manifold $X=\operatorname{Teich}\left(S_{g, n}\right)$.

Since $3 g-3+n \geq 2$, there exists a subgroup N of $\operatorname{Mod}\left(S_{g, n}\right)$ generated by Dehn twists as above, with elements conjugate in $\operatorname{Mod}\left(S_{g, n}\right)$, and with the property that N is not virtually nilpotent (since it contains, for example, noncyclic free subgroup (see, e.g. [FLM])). Note that in case $g=0$, the elements g_{i} can be
taken to be Dehn twists about curves which surround two punctures (hence are separating), in particular they are conjugate in $\operatorname{Mod}\left(S_{g, n}\right)$.

As X is δ-hyperbolic, the exact same argument as in the proof of Theorem 1.2 gives some $x \in X$ which is fixed by each generator g_{i}.

Fix any horosphere H based at x, and fix a basepoint $s \in H$. Then $d\left(s, g_{i} s\right) \leq$ C_{H} for some constant C_{H} for each generator g_{i}. As the sectional curvature of X is pinched between two negative constants, we may find a horosphere H based at $x \in \partial X$ so that C_{H} is as small as we want; the key point is that the pinching of the curvatures gives a definite (exponential) rate at which geodesic rays asymptotic to x converge. Choosing H so that C_{H} is smaller than the Margulis constant for X (which depends only on $\operatorname{dim}(X)$ and on the pinching constants of the sectional curvatures) and applying the Margulis Lemma (see, e.g. [BGS]), it follows that N contains a nilpotent subgroup of finite index, a contradiction.

Remarks.

(1) Ivanov proves in [Iv1] that (with a few exceptions) the mapping class group is not the fundamental group of a finite volume, nonpositively curved visibility manifold in the sense of Eberlein-O'Neill. As universal covers of visibility manifolds are δ-hyperbolic, this result follows from Theorem 1.2.
(2) Theorem 1.3 may also be deduced (though not in some of the low genus cases) from the topological structure of the end of $\mathcal{M}_{g, n}$. On the one hand, every end of a finite volume manifold of pinched negative curvature is homeomorphic to the product of a compact nilmanifold and $[0, \infty)$; this is essentially the Margulis Lemma (see [BGS]). On the other hand, it seems to be well known (see, e.g. [FM]) that the entire orbifold fundamental group of $\mathcal{M}_{g, n}$ is carried by its end; in particular the fundamental group of the end is not virtually nilpotent. This argument actually shows that no finite cover of $\mathcal{M}_{g, n}$ admits a complete, finite volume Riemannian metric of pinched negative curvature.
4. Quasi-flats in the pants graph. Let S be a surface of genus g with n boundary components. We say S decomposes into essential subsurfaces R_{1}, \ldots, R_{k} if each R_{j} may be modified by an isotopy so that they are pairwise disjoint and $S-R_{1} \sqcup \cdots \sqcup R_{k}$ is a collection of open, annular neighborhoods of simple closed curves on S, each isotopic to a boundary component of R_{j}.

Let $r(S)$ denote the maximum number k in any decomposition of S into essential subsurfaces R_{1}, \ldots, R_{k} such that each $R_{j}, j=1, \ldots, k$ has genus at least one, or at least four boundary components. Then $r(S)$ is greatest integer which is at most $(d(S)+1) / 2$.

Theorem 4.1. The graph $\mathbf{P}(S)$ contains a quasi-flat of dimension $r(S)$.
Proof. The surface S decomposes into subsurfaces

$$
R_{1}, \ldots, R_{r(S)}, T
$$

so that $d\left(R_{j}\right)=1$ for each j and either T is empty or $d(T)=0$. Let $n=r(S)$. We describe a quasi-isometric embedding of the Cayley graph for \mathbb{Z}^{n} with the standard generators into the graph $\mathbf{P}(S)$.

Let c_{j} be a vertex in the curve complex $\mathcal{C}\left(R_{j}\right)$. Then together with the core curves of the open nonperipheral annuli in $S-R_{1} \sqcup \ldots \sqcup R_{r(S)} \sqcup T$, the curves c_{j} form a pants decomposition $P=P\left(c_{1}, \ldots, c_{n}\right)$ of S.

We let $g_{j}: \mathbf{R} \rightarrow \mathcal{C}\left(R_{j}\right)$ be a geodesic so that $g_{j}(0)=c_{j}$. Note that $\mathcal{C}\left(R_{j}\right)$ is the Farey graph, so we may take any bi-infinite geodesic g_{j} in $\mathcal{C}\left(R_{j}\right)$ passing through c_{j}.

We claim that the embedding

$$
Q: \mathbb{Z}^{n} \rightarrow \mathbf{P}(S)
$$

defined by

$$
Q\left(k_{1}, \ldots, k_{n}\right)=P\left(g_{1}\left(k_{1}\right), \ldots, g_{n}\left(k_{n}\right)\right)
$$

is a quasi-isometry, whose constants depend only on S.
Let $\vec{k}=\left(k_{1}, \ldots, k_{n}\right)$ and $\vec{l}=\left(l_{1}, \ldots, l_{n}\right)$. Since elementary moves along g_{j} can be made independently in each R_{j}, we have

$$
d_{\mathbf{P}}(Q(\vec{k}), Q(\vec{l})) \leq \sum_{j=1}^{n}\left|l_{j}-k_{j}\right|=d_{\mathbb{Z}^{n}}(\vec{k}, \vec{l})
$$

which shows that Q is 1-Lipschitz.
Given R_{j}, the projection $\pi_{R_{j}}(Q(\vec{k}))$ to R_{j} described in $\S 2.3$ simply picks out the curve $g_{j}\left(k_{j}\right)$ so we have

$$
\pi_{R_{j}}(Q(\vec{k}))=g_{j}\left(k_{j}\right)
$$

Thus, the projection distance

$$
d_{R_{j}}(Q(\vec{k}), Q(\vec{l}))=d_{R_{j}}\left(g_{j}\left(k_{j}\right), g_{j}\left(l_{j}\right)\right)
$$

which is simply $\left|k_{j}-l_{j}\right|$ since g_{j} is a geodesic in $\mathcal{C}\left(R_{j}\right)$.
By Theorem 6.12 of [MM2], there exists $M_{0}=M_{0}(S)$ so that for all $M \geq M_{0}$ there exist constants K_{0} and K_{1} so that if we let $P_{\vec{k}}=Q(\vec{k})$ and $P_{\vec{l}}=Q(\vec{l})$ then we have the inequality

$$
\sum_{\substack{Y \subseteq S \\ d_{Y}\left(\pi_{Y}\left(P_{\vec{k}}\right), \pi_{Y}\left(P_{\vec{l}}\right)\right)>M}} d_{Y}\left(P_{\vec{k}}, P_{\vec{l}}\right) \leq K_{0} d_{\mathbf{P}}\left(P_{\vec{k}}, P_{\vec{l}}\right)+K_{1}
$$

But the left-hand-side of the inequality is bounded below by

$$
\max _{j}\left|k_{j}-l_{j}\right| \geq \frac{\sum_{j}\left|k_{j}-l_{j}\right|}{n}
$$

Thus, Q is a quasi-isometric embedding.
5. The case of low genus. In the case where $d(S)=1$, where $\operatorname{int}(S)$ is homeomorphic to a punctured torus or four-times-punctured sphere, the pants graph $\mathbf{P}(S)$ is identified with the curve complex $\mathcal{C}(S)$, which is Gromov-hyperbolic (see [MM1]).

Together with the previous section, this observation leaves one case unattended, namely that when $d(S)=2$. In this case, $\operatorname{int}(S)$ is homeomorphic either to a doubly-punctured torus, or a five-times-punctured sphere. In this section we prove the following:

Theorem 5.1. Let S be such that $d(S)$ equals 1 or 2 . Then the Weil-Petersson metric on Teich (S) is Gromov-hyperbolic.

The case $d(S)=1$ is proven in [MM1], since $\mathcal{C}(S)=\mathbf{P}(S)$ in this case. Thus we are left to treat the case when $d(S)=2$. In this case, we apply results of the second author which, although initially phrased in the context of groups with their word metrics, apply to general metric spaces.

Our argument will employ the notion of relative hyperbolicity developed in [Fa]. In essence, a metric space is relatively hyperbolic relative to a collection of subsets if the result of crushing those subsets to have diameter 1 is a hyperbolic metric space. In the case $d(S)=2$, we will show that $\mathbf{P}(S)$ is relatively hyperbolic relative to regions H_{α} consisting of pants decompositions containing a fixed curve α. Since, in this case, such regions are themselves hyperbolic, it is possible to establish Gromov-hyperbolicity $\mathbf{P}(S)$ by showing that paths in $\mathbf{P}(S)$ that determine quasi-geodesics in the relative space satisfy certain boundedness properties with respect to their trajectories through these regions (this is the bounded region penetration property, below).

Remark. One can prove Theorem 5.1 by directly demonstrating a thintriangles condition after replacing geodesics in $\mathbf{P}(S)$ by the hierarchies of [MM2] (this was our original approach to the argument). We have chosen instead to employ the theory relative hyperbolicity as it is more familiar, and unifies these cases with the higher genus cases. Indeed, when $d(S)>2$ the natural regions with respect to which $\mathbf{P}(S)$ is relatively hyperbolic (sub-graphs of pairs of pants containing a given curve α) are not themselves hyperbolic; they are the quasi-flats of the previous section.

Relative hyperbolicity. Let (X, d) be a geodesic metric space, and let H_{α} be a collection of connected subsets of X, with index α in an index set A. Then
the electric space \widehat{X} relative to the regions $\left\{H_{\alpha}\right\}$ is obtained by collapsing each region to have diameter one, as follows (see [Fa, Sec. 3]). Adjoin to the space X a single point c_{α} for each $\alpha \in A$ by connecting c_{α} to each point of H_{α} by a segment of length $1 / 2$. Let \widehat{X} denote the resulting path-metric space and let $d_{e}(\cdot, \cdot)$ denote path distance in \widehat{X}. Given a path w in X we obtain a path in \widehat{X} by replacing segments where w travels in H_{α} with a path joining the endpoints of the segment to c_{α}. As in [Fa], we denote this path-replacement procedure by $X \rightarrow \widehat{X}$ or $w \mapsto \hat{w}$. We denote by $I(w)$ the initial point of w and by $T(w)$ the terminal point of w. The points $I(w)$ and $T(w)$ depend on the choice of parameterization.

If \hat{w} is a (k-quasi) geodesic in \widehat{X} we say w is a relative (k-quasi) geodesic in X. If a path w in X (or \hat{w} in \widehat{X}) passes through some region H_{α} we say it penetrates H_{α}. A path $w \in X$ (or \hat{w} in \widehat{X}) has no backtracking if for every region H_{α} that \hat{w} penetrates, once it leaves H_{α} it never returns. The space X is hyperbolic relative to $\left\{H_{\alpha}\right\}_{\alpha \in A}$ if the electric space \widehat{X} is Gromov hyperbolic.

In the pants graph, consider following collection of regions: for each $\alpha \in \mathcal{C}(S)$ let

$$
H_{\alpha}=\{P \in \mathbf{P}(S) \mid \alpha \in P\} .
$$

Then we have the following theorem (cf. [MM1, Thms. 1.2, 1.3]).
Lemma 5.2. For $d(S) \geq 2$, the graph $\mathbf{P}(S)$ is hyperbolic relative to the regions $\left\{H_{\alpha}\right\}$.

Remark. When $d(S)=1$ the electric space is clearly quasi-isometric to $P(S)$ (since each region contains exactly one vertex) and is thus hyperbolic.

Proof. It suffices to show that the electric space $\widehat{\mathbf{P}(S)}$ with respect to the regions $\left\{H_{\alpha}\right\}$ is quasi-isometric to the curve complex $\mathcal{C}(S)$, which is Gromovhyperbolic by [MM1, Thm. 1.1].

To see this, let $\Gamma=\mathbf{P}(S)$, let $\widehat{\Gamma}$ be the electric space associated to the regions $\left\{H_{\alpha}\right\}$, and let c_{α} be the point added to Γ at distance $1 / 2$ from each point of H_{α} to form $\widehat{\Gamma}$. Consider the mapping

$$
q: \mathcal{C}^{0}(S) \rightarrow \widehat{\Gamma}
$$

from the zero-skeleton of $\mathcal{C}(S)$ to Γ obtained by setting $q(\alpha)=c_{\alpha}$. Note that the map q is surjective to the vertices of $\widehat{\Gamma} \backslash \Gamma$, and that given a pants decomposition P, if β is an element of P then P lies a distance $1 / 2$ from c_{β}, so the image $q\left(\mathcal{C}^{0}(S)\right)$ is $1 / 2$-dense.

Moreover, we have $d_{\mathcal{C}(S)}(\alpha, \beta)=1$ if and only if there is a P for which $\alpha \in P$ and $\beta \in P$. But $\alpha \cup \beta \subset P$ holds if and only if the regions H_{α} and H_{β} intersect, which holds if and only if

$$
d_{\widehat{\Gamma}}\left(c_{\alpha}, c_{\beta}\right)=1
$$

It follows that q is 1-Lipschitz, and we claim that in fact it is 1-bi-Lipschitz. To see this, let α and β be arbitrary vertices in $\mathcal{C}^{0}(S)$ and consider a shortest path g from $q(\alpha)$ to $q(\beta)$. We claim that there is a path g^{\prime} of equal length such that g^{\prime} consists of segments of length $1 / 2$ each of which has one endpoint in the image of q and one endpoint in Γ (the path g^{\prime} will have the property that it alternates between vertices in Γ and vertices in $\stackrel{\widehat{\Gamma}}{\Gamma}$).

To see this, we note that for each unit length subsegment s of g that lies in Γ, s represents an elementary move joining a pants decomposition P to a pants decomposition P^{\prime}. It follows that there is a single curve $\gamma \in \mathcal{C}^{0}(S)$ so that γ represents a curve in each of the pants decompositions P and P^{\prime}. This means that $P \in H_{\gamma}$ and $P^{\prime} \in H_{\gamma}$, so there are segments in $\widehat{\Gamma}$ of length $1 / 2$ joining P to c_{γ} and P^{\prime} to c_{γ}. Concatenating these segments yields a unit length segment \widehat{s} in $\widehat{\Gamma}$ joining the endpoints of s via c_{γ}.

Thus, given g we may replace any unit-length subsegment of g that joins vertices of Γ within Γ with a pair of segments joining the endpoints of the subsegment via a point in the image of q. Applying this procedure to each such subsegment of g yields a path $g^{\prime} \subset \widehat{\Gamma}$ of the same length that consists of unit length segments joining curves in the image of q. It follows that this sequence of unit length segments describes a path in $\mathcal{C}(S)$ of the same length, since each pair of points in the image of q at unit distance in $\widehat{\Gamma}$ have preimages with unit distance in $\mathcal{C}(S)$.

Thus, the map q is 1 -bi-Lipschitz, and since the image is $1 / 2$-dense we may construct a 2 -Lipschitz inverse to q. Thus, q a quasi-isometry.

Bounded region penetration. We now recall results of [Fa] detailing a criterion on relative quasi-geodesics that will serve to ensure hyperbolicity of $\mathbf{P}(S)$ when $d(S)=2$. The following definition is analogous to the "bounded coset penetration property" in $\S 3.3$ of [Fa].

Definition 5.3. (bounded region penetration) The pair $\left(X,\left\{H_{\alpha}\right\}\right)$ satisfies the bounded region penetration property if for every $k \geq 1$ there is a constant $c=$ $c(k)>0$ so that if u and w are relative k-quasi-geodesics without backtracking so that the initial and terminal points of u and w satisfy $d_{X}(I(u), I(w)) \leq 1$ and $d_{X}(T(u), T(w)) \leq 1$ then the following holds:
(1) If u penetrates a region H_{α} but w does not penetrate H_{α}, then u travels an X-distance at most c in H_{α}.
(2) If both u and w penetrate a region H_{α} then the points at which u and w first enter H_{α} lie an X-distance at most c from one another and likewise for the exit points.

An important application is the following theorem in which bounded region penetration is used to bootstrap from hyperbolicity relative to hyperbolic regions to hyperbolicity of the original metric space.

Theorem 5.4. Suppose X is hyperbolic relative to the regions $\left\{H_{\alpha}\right\}$ and that the pair $\left(X,\left\{H_{\alpha}\right\}\right)$ has the bounded region penetration property. Then if the regions H_{α} are themselves δ-hyperbolic metric spaces for some $\delta>0$, then X is a Gromovhyperbolic metric space.

Proof of Theorem 5.4. Theorem 5.4 is simply a recasting of the remark following [Fa, Thm. 3.8] from groups to general metric spaces. The proof works verbatim in this case, with the following addition: one replaces the use of the theorem that a linear isoperimetric inequality for a finitely presented group implies that the group is δ-hyperbolic by the corresponding theorem for metric spaces with a well-defined notion of area. Such a theorem is proven by Bowditch in [Bowd]; in this case one can use for area the combinatorial area of the simplicial complex whose 1-skeleton is the pants graph $\mathbf{P}(S)$, where the attaching maps for 2-cells are parametrized loops of combinatorial length $3,4,5$, or 6 , and where there are no other edges between vertices. (This is a variant of the 2-complex studied by Hatcher-Thurston in [HT]. It is shown to be simply connected in [HLS, Thm. D]). One may verify that Bowditch's proof extends to the locally infinite case.

Proof of Theorem 5.1. The condition $d(S)=2$ implies that each pants decomposition of S is built from exactly two disjoint simple closed curves on S.

Lemma 5.5. Suppose $d(S)=2$. Then there is a δ so that for each $\alpha \in \mathcal{C}(S)$, the region H_{α} is δ-hyperbolic.

Proof. Given $\alpha \in \mathcal{C}(S)$, let Y_{α} denote the connected component of the complement of an embedded open annular neighborhood of α for which $d\left(Y_{\alpha}\right)=$ 1. Then the region H_{α} is isometric to the curve complex $\mathcal{C}\left(Y_{\alpha}\right)$. Again, [MM1, Thm. 1.1] implies that H_{α} is hyperbolic.

To prove Theorem 5.1, then, it suffices to prove that when $d(S)=2$, the pair $\left(\mathbf{P}(S),\left\{H_{\alpha}\right\}\right)$ has the bounded region penetration property. To this end, let u and w be two relative k-quasi-geodesics in $\mathbf{P}(S)$ without backtracking, so that $d_{\mathbf{P}}(I(u), I(w)) \leq 1$ and $d_{\mathbf{P}}(T(u), T(w)) \leq 1$. Let H_{α} be a region which u penetrates but w does not. As the projections \hat{u} and \hat{v} are k-quasi-geodesics in the relatively hyperbolic space $\left(\mathbf{P}(S),\left\{H_{\alpha}\right\}\right)$, it follows from the definition that \hat{u} and $\hat{w} D$ -fellow-travel in the electric space $\widehat{\mathbf{P}(S)}$ for some $D>0$ depending only on k. For simplicity of notation let $\Gamma=\mathbf{P}(S)$ and let $\widehat{\Gamma}$ be the associated electric space relative to the regions $\left\{H_{\alpha}\right\}$.

We observe that in our circumstances, the path replacement $u \mapsto \hat{u}$ can be viewed as producing an explicit path in $\mathcal{C}(S)$ from a path u in Γ. A pants decomposition of S is a maximal simplex in $\mathcal{C}(S)$, and since $d(S)=2$ each pants decomposition corresponds to an edge in $\mathcal{C}(S)$. Hence, a path u in Γ determines a sequence of edges in $\mathcal{C}(S)$ so that successive edges meet in an endpoint. Then we may resolve the sequence of edges in $\mathcal{C}(S)$ determined by u into a path \tilde{u} in
$\mathcal{C}(S)$ by removing all but the first and last edges in any sequence of consecutive edges in u that all contain a single vertex. The path \tilde{u} in $\mathcal{C}(S)$ has image \hat{u} under the quasi-isometry q (up to segments of length $1 / 2$ at the endpoints).

To employ the extra information the curve complex provides, we work with \tilde{u} and \tilde{w} rather than \hat{u} and \hat{w}. The condition that u is a relative k-quasi-geodesic without backtracking simply means that the path \tilde{u} is a k-quasi-geodesic in $\mathcal{C}(S)$ that never repeats a vertex. Proving that $\left(\Gamma,\left\{H_{\alpha}\right\}\right)$ satisfies bounded region penetration property, then, reduces to verifying that for paths u and w in Γ for which $d_{\Gamma}(I(u), I(w)) \leq 1$ and $d_{\Gamma}(T(u), T(w)) \leq 1$, and whose corresponding paths \tilde{u} and \tilde{w} are k-quasi-geodesics without backtracking we have:
(1') If \tilde{u} encounters a vertex v_{α} that \tilde{w} avoids, the vertices v_{β} and v_{γ} adjacent to v_{α} on \tilde{u} have distance

$$
d_{Y_{\alpha}}\left(v_{\beta}, v_{\gamma}\right)<c
$$

in the subsurface Y_{α}.
(2') If \tilde{u} and \tilde{w} each encounter a vertex v_{α}, then the vertices $v_{\beta} \in \tilde{u}$ and $v_{\beta^{\prime}} \in \tilde{w}$ just prior to the encounter with v_{α} satisfy

$$
d_{Y_{\alpha}}\left(v_{\beta}, v_{\beta^{\prime}}\right)<c
$$

and likewise for the points v_{γ} and $v_{\gamma^{\prime}}$ on \tilde{u} and \tilde{w} just following the encounter with v_{α}.

For the remainder of this section we will denote by v_{α} the vertex in $\mathcal{C}(S)$ corresponding to the simple closed curve α on S to avoid notational confusion. To see property (1^{\prime}) implies property (1) above, note that the condition that $\left\{v_{\beta}, v_{\alpha}, v_{\gamma}\right\}$ is a sub-segment of \tilde{u} implies that $P=\left\{v_{\alpha}, v_{\beta}\right\}$ and $P^{\prime}=\left\{v_{\alpha}, v_{\gamma}\right\}$ are the pants decompositions along the path u where u enters and exits the region H_{α}. If $d_{Y_{\alpha}}\left(v_{\beta}, v_{\gamma}\right)<c$ then there is a sequence of pants decompositions joining P to P^{\prime} of length at most c given by taking a geodesic

$$
\left\{v_{\beta}=v_{0}, \ldots, v_{N}=v_{\gamma}\right\}
$$

joining v_{β} to v_{γ} in $\mathcal{C}\left(Y_{\alpha}\right)$ and taking the sequence of pants decompositions to be $\left\{P_{j}=\left\{v_{\alpha}, v_{j}\right\}\right\}_{j}$. One argues similarly that property (2^{\prime}) implies property (2).

We now verify that properties (1^{\prime}) and (2^{\prime}) hold. Since \tilde{u} does not backtrack, we may choose points x and y on \tilde{u} on either side of the vertex v_{α} as follows. Either x is an endpoint of \tilde{u} or x lies at distance $2 D$ in $\mathcal{C}(S)$ from the vertex v_{β} adjacent on \tilde{u} to v_{α}, whichever is closer along \tilde{u}. The point y is either an endpoint of \tilde{u} or y lies at distance $2 D$ along \tilde{u} from the vertex v_{γ} adjacent to v_{α} whichever is closer along \tilde{u}. There is then a path p on \tilde{w} (which does not encounter v_{α}) from the nearest point to x on \tilde{w} to the nearest point to y. Letting p_{x} be the shortest path joining x to \tilde{w} and letting p_{y} be the shortest path joining y to \tilde{w} in $\mathcal{C}(S)$, the
concatenation

$$
q=p_{x} \circ p \circ p_{y}
$$

is a path in $\mathcal{C}(S)$ that avoids the vertex v_{α}. Moreover, the path q has length at most

$$
k(6 D+2)+2 D
$$

since it is a k-quasi-geodesic with distance at most $6 D+2$ between its endpoints together with geodesic segments of length at most D at each end.

Letting q_{x} be the path along \tilde{u} of length at most $k(2 D)$ joining x to v_{β}, and letting q_{y} be the path along \tilde{u} of length at most $k(2 D)$ joining y to v_{γ}, we have a path

$$
r=q_{x} \circ q \circ q_{y}
$$

of length at most $k(8 D+2)+2 D$ that avoids the vertex v_{α} entirely.
The path r describes a path in the curve complex $\mathcal{C}(S)$ so that each vertex along the interior of r corresponds to a curve that either lies in $\mathcal{C}\left(Y_{\alpha}\right)$ or intersects ∂Y_{α}. It follows from Lemma 2.2 that any two consecutive vertices z and z^{\prime} on r satisfy

$$
d_{Y_{\alpha}}\left(z, z^{\prime}\right) \leq 2 .
$$

Thus we have the bound

$$
d_{Y_{\alpha}}\left(v_{\alpha}, v_{\beta}\right) \leq 2 k(8 D+2)+4 D .
$$

A similar argument proves property (2) of the bounded region penetration property holds. Choose a point x on \tilde{u} so that either x is the first vertex of \tilde{u} or x is at distance $2 D$ along \tilde{u} from v_{β}, whichever is closer along \tilde{u} to v_{β}. By fellow traveling, there is a point y on \tilde{w} and a path p of length at most D joining x to y in $\mathcal{C}(S)$. The path along \tilde{w} joining y to the last vertex v_{η} prior to v_{α} along \tilde{w} has length at most $k(3 D+2)$ in $\mathcal{C}(S)$, so there is a path r in $\mathcal{C}(S)$ of total length bounded by

$$
k(3 D+2)+D+k(2 D)=k(5 D+2)+D
$$

joining v_{β} to v_{η} that does not hit v_{α} in its interior. Again, by lemma 2.2 any two consecutive vertices z and z^{\prime} on r have the property that

$$
d_{Y_{\alpha}}\left(z, z^{\prime}\right) \leq 2
$$

so we have

$$
d_{Y_{\alpha}}\left(v_{\alpha}, v_{\eta}\right) \leq 2 k(5 D+2)+2 D .
$$

The same argument proves that points on v_{α}^{\prime} and v_{η}^{\prime} adjacent to v_{α} where \tilde{u} and \tilde{w} depart from v_{α} also have bounded distance $d_{Y_{\alpha}}\left(v_{\alpha}^{\prime}, v_{\eta}^{\prime}\right)$.

Having verified that properties $\left(1^{\prime}\right)$ and (2^{\prime}) hold, we conclude that the pair ($\Gamma,\left\{H_{\alpha}\right\}$) has the bounded region penetration property. The theorem follows from Theorem 5.4.
6. Questions. We close the paper with some natural questions.

Question 6.1. (McMullen) Does the orbifold $\mathcal{M}_{g, n}$ (or one of its finite manifold covers) admit a complete, nonpositively curved Riemannian metric?

McMullen's Kähler metric on $\mathcal{M}_{g, n}$ is complete but not nonpositively curved, while the Weil-Petersson metric is nonpositively curved but is not complete. Is there a possible compromise?

Question 6.2. What is the geometric rank of:

- the Weil-Petersson metric?
- the Teichmüller metric?
- the mapping class group?

Theorem 1.4 gives the lower bound $d(S) / 2$ to the rank of the Weil-Petersson metric, while [Min] and [FLM] establish the lower bound $d(S)$ for the rank of the Teichmüller metric and the mapping class group, respectively. We conjecture that our lower bound on the rank of the Weil-Petersson metric is also an upper bound. The answers to these rank questions seem to be essential to understanding quasi-isometric rigidity questions in Teichmüller space and the mapping class group.

In an earlier version of this paper, we had posed the following problem: If S is homeomorphic to a doubly-punctured torus or 5 -times-punctured sphere, are the sectional curvatures of the Weil-Petersson metric bounded away from zero? Were the (geodesically convex) Weil-Petersson metric to have curvature pinched from above by a negative constant, its Gromov-hyperbolicity in this case would be an immediate consequence. However, Zheng Huang [Hu] answered this question in the negative; indeed he shows that when $d(S) \geq 2$, then the negative sectional curvatures of the Weil-Petersson metric are not bounded away from 0 .

Mathematics Department, Brown University, Box 1917, Providence, RI 02912
E-mail: brock@math.brown.edu
Mathematics Department, University of Chicago, 5734 S. University Ave., Chicago, IL 60637
E-mail: farb@math.uchicago.edu

REFERENCES

[Ar] J. Aramayona, The Weil-Petersson geometry of the five-times punctured sphere, preprint, Univ. of Southampton, June 2004.
[BGS] W. Ballman, M. Gromov, and V. Schroeder, Manifolds of Nonpositive Curvature, Birkhäuser, Basel, 1985.
[B] J. Behrstock, Asymptotic geometry of the mapping class group and Teichmüller space, Ph.D. thesis, SUNY Stony Brook, 2004.
[Be] M. Bestvina, Questions in geometric group theory, Available online at http://www.math.utah.edu/ ${ }^{\sim}$ bestvina.
[Bowd] B. H. Bowditch, Notes on Gromov's hyperbolicity criterion, Group Theory from a Geometrical Viewpoint (E. Ghys, A. Haefliger, and A. Verjovsky, eds.), World Scientific, Singapore, 1991, pp. 64-167.
[Br] J. Brock, The Weil-Petersson metric and volumes of 3-dimensional hyperbolic convex cores, J. Amer. Math. Soc. 16 (2003), 495-535.
[EF] A. Eskin and B. Farb, Quasi-flats and rigidity in higher rank symmetric spaces, J. Amer. Math. Soc. 10 (1997), 653-692.
[Fa] B. Farb, Relatively hyperbolic groups, Geom. Funct. Anal. 8 (1998), 1-31.
[FF] B. Farb and J. Franks, Groups of homeomorphisms of one-manifolds, I: actions of nonlinear gropus, preprint, 2001.
[FLM] B. Farb, A. Lubotzky, and Y. Minsky, Rank one phenomena for mapping class groups, Duke Math. J. 106 (2001), 581-597.
[FM] B. Farb and D. Margalit, A primer on mapping class groups, in preparation.
[GH] E. Ghys and P. de la Harpe, eds., Sur les groupes hyperboliques d'ápres Mikhael Gromov, Progr. Math., vol. 83, Birkhäuser, Basel, 1990.
[Grom] M. Gromov, Asymptotic invariants of infinite groups, Geometric Group Theory (G. Niblo and M. Roller, eds.), London Math. Soc. Lecture Note Ser., vol. 182, Cambridge Univ. Press, 1993.
[HLS] A. Hatcher, P. Lochak, and L. Schneps, On the Teichmüller tower of mapping class groups, J. Reine Angew. Math. 521 (2000), 1-24.
[HT] A. Hatcher and W. Thurston, A presentation for the mapping class group, Topology 19 (1980), 221237.
[Hu] Z. Huang, Asymptotic flatness of the Weil-Petersson metric on Teichmüller space, Geom. Dedicata 110 (2005), 81-102.
[Iv1] N. V. Ivanov, Teichmüller modular groups and arithmetic groups, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 167 (1988), 95-110, 190-191.
[Iv2] _ Subgroups of Teichmüller Modular Groups, Transl. Math. Monogr., vol. 115, American Mathematical Society, Providence, RI, 1992.
[Iv3] _ Mapping class groups, Handbook of Geometric Topology, North-Holland, Amsterdam, 2002, pp. 523-633.
[Iv4] \longrightarrow A short proof of Gromov non-hyperbolicity of Teichmüller spaces, Ann. Acad. Sci. Fenn. Math. 27 (2002), 3-5.
[KL] B. Kleiner and B. Leeb, Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings, Inst. Hautes Études Sci. Publ. Math. 86 (1997), 115-197.
$[\mathrm{Kr}] \quad$ S. Kravetz, On the geometry of Teichmller spaces and the structure of their modular groups, Ann. Acad. Sci. Fenn. 278 (1959).
[Mas1] H. Masur, On a class of geodesics in Teichmüller space, Ann. of Math. 102 (1975), 205-221.
\qquad The extension of the Weil-Petersson metric to the boundary of Teichmüller space, Duke Math. J. 43 (1976), 623-635.
[MM1] H. Masur and Y. Minsky, Geometry of the complex of curves I: hyperbolicity, Invent. Math. 138 (1999), 103-149.
[MM2] \qquad Geometry of the complex of curves II: hierarchical structure, Geom. Funct. Anal. 10 (2000), 902-974.
[MW] H. Masur and M. Wolf, Teichmüller space is not Gromov hyperbolic, Ann. Acad. Sci. Fenn. 20 (1995), 259-267.
[MP1] J. McCarthy and A. Papadopoulos, The mapping class group and a theorem of Masur-Wolf, Topology Appl. 96 (1996), 75-84.
[MP2] \longrightarrow, The visual sphere of Teichmüller space and a theorem of Masur-Wolf, Ann. Acad. Sci. Fenn. Math. 24 (1999), 147-154.
[Mc] C. McMullen, The moduli space of Riemann surfaces is Kähler hyperbolic, Ann. of Math. 151 (2000), 327-357.
[Min] Y. Minsky, Quasi-projections in Teichmüller space, J. Reine Angew. Math. 473 (1996), 121-136.
[Wol] S. Wolpert, Noncompleteness of the Weil-Petersson metric for Teichmüller space, Pacific J. Math. 61 (1975), 573-577.

[^0]: Manuscript received September 24, 2003; revised December 20, 2004.
 Research of both authors supported in part by the National Science Foundation.
 American Journal of Mathematics 128 (2006), 1-22.

